In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT
نویسندگان
چکیده
The limbus is the structurally rich transitional region of tissue between the cornea on one side, and the sclera and conjunctiva on the other. This zone, among other things, contains nerves passing to the cornea, blood and lymph vasculature for oxygen and nutrient delivery and for waste, CO(2) removal and drainage of the aqueous humour. In addition, the limbus contains stem cells responsible for the existence and healing of the corneal epithelium. Here we present 3D images of the healthy human limbus, acquired in vivo with a spectral domain optical coherence tomography system operating at 1060nm. Cross-sectional and volumetric images were acquired from temporal and nasal locations in the human limbus with ~3µm x 18µm (axial x lateral) resolution in biological tissue at the rate of 92,000 A-scans/s. The imaging enabled detailed mapping of the corneo-scleral tissue morphology, and visualization of structural details such as the Vogt palisades, the blood and lymph vasculature including the Schlemm's canal and the trabecular meshwork, as well as corneal nerve fiber bundles. Non-invasive, volumetric, high resolution imaging reveals fine details of the normal human limbal structure, and promises to provide invaluable information about its changes in health and disease as well as during and after corneal surgery.
منابع مشابه
In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography
The corneo-scleral limbus contains several biological components, which are important constituents for understanding, diagnosing and managing several ocular pathologies, such as glaucoma and corneal abnormalities. An anterior segment optical coherence tomography (AS-OCT) system integrated with optical microangiography (OMAG) is used in this study to non-invasively visualize the three-dimensiona...
متن کاملRelationship between vessel diameter and depth measurements within the limbus using ultra-high resolution optical coherence tomography
PURPOSE To establish a relationship between the diameter and depth position of vessels in the superior and inferior corneo-scleral limbus using ultra-high resolution optical coherence tomography (UHR-OCT). METHODS Volumetric OCT images of the superior and inferior limbus were acquired from 14 healthy subjects with a research-grade UHR-OCT system. Differences in vessel diameter and depth betwe...
متن کاملIn-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography.
A research-grade OCT system was used to image in-vivo and without contact with the tissue, the cellular structure and microvasculature of the healthy human corneo-scleral limbus. The OCT system provided 0.95 µm axial and 4 µm (2 µm) lateral resolution in biological tissue depending on the magnification of the imaging objective. Cross-sectional OCT images acquired tangentially from the inferior ...
متن کاملIn vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1μm swept source phase-variance optical coherence angiography.
We present nnnnnin vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo-sc...
متن کاملOptical coherence tomography (OCT) is a low coherence interferometric imaging modality that can perform high- speed and high-resolution cross-sectional and volumetric imaging
We demonstrate an application of high-speed swept source optical coherence tomography for vessel visualization in the anterior segment of the human eye. The human corneo-scleral junction and sclera was imaged in vivo. Imaging was performed using a swept source OCT system operating at the 1050nm wavelength range and 100kHz A-scan rate. High imaging speed enables the generation of 3D depth-resolv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011